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OF P O L Y M E R  S O L U T I O N S  A N D  MELTS.  N O N L I N E A R  E F F E C T S  IN S I M P L E  S H E A R  
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This paper is a continuation of [1], where, based on microstructural concepts, a rheological equation of 
state (RES) is derived and some relations of linear viscoelasticity are considered. The results of [1] show good 
agreement with experimental data on the dynamic shear modulus for monodisperse polymer solutions and 
melts. This raises the question as to whether nonlinear effects in flows of polymer systems can be described 
using the rheological model of [1]. However, the solution of this problem requires the refinement of some 
relations obtained previously. 

Based on the equations of the dynamics of a macromolecule [1, 2], the expression for the stress tensor 
of a polymer system is of the form 

~ik = -v06,k + 3 n r ~  xTk - 5 ~ k  - ~ ( ~ 5  + ~ , )  �9 (1) 

For the dimensionless tensors x~k and u~' k entering into (1), the relaxation equations obtained in [1] are 
of the form 
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is the Yauman derivative of the tensor quantity x~k , ~" is the relation time of the environment, B r  R = Br*/c~  2 
are the Rouse relaxation times, r is a measure of intrinsic viscosity, Vii and wij are the symmetric and 
antisymmetric parts of the velocity-gradient tensor v/j, the quantities/3, ~e, e, and u axe the induced anisotropy 
parameters, and 8ik is the Kronecker delta. 

Since the expression for the stress tensor (1) is written in symmetric form, it is more convenient to use 
the equation Y5 = (uS + u~i)/2 instead of (3). This equation can be obtained from (3) using the symmetry 
of the tensors c~k and b~k and assuming the permutability of the tensors u~k with 7ik, c~k, and b~k. By virtue 
of the existence of a functional relationship between x~k , u~k , and "/it and also by virtue of the fact that c~k 
and b~' k are expressed in terms of x~k, this assumption is not a significant constraint. 
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Then, instead of (1) and (3), we obtain 

aik=--Po~ik + 3 n T ~ ,  ~ x i ~ - ~ i k - - Y ~  ; (4) 
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D---~ Y5 - ~ k ij~/j,Yk, + kjTj,Y,i) + 4--~vaa (bi~Yj~ + b~jYj~i) + -r YTk 

6ij ] fTk - 2Br~ Zij71ndnk 4- 
2r 

System (2), (4), and (5) describes a nonlinear viscoelastic anisotropic fluid and is characterized by six 
dimensionless parameters, X = T/2Br*,  ~/), /3, e, ~e, and v, and by two dimensional parameters, Br* and f T .  

RES (2), (4), and (5) should be checked for correspondence to real polymer fluid flows. The flows 
realizable in practice are very diverse, and, naturally, the check of the RES should be begun with the simplest 
cases. One type of flows that are often realized in viscometers of various design is simple shear. In this case, 
the velocity-gradient tensor contains only one nonzero component va2(t), which varies with time by a known 
law. 

The rheological behavior of the polymer system is then conveniently characterized by the following 
viscometric functions: the shear viscosity ~7 and the first N1 and second N2 differences of normal stresses, 
which are given by 

=alz/v12,  N l = a l l - a 2 2 ,  N 2 = a 2 2 - a 3 3  (6) 

and are generally functions of the velocity gradient and time. 
The dependence v12(t) is often used in the form v12(t) = "yE(t) or va2(t) = "TE(-t). Here "7 is the 

shear velocity and E(t)  is the unit Heaviside function. In the first case, system (2), (4), and (5) describes the 
establishment of stresses from the state of rest, and the corresponding viscometric functions (6) are denoted 
by y+("/, t) and N+(7 ,  t). In the second case, this system describes stress relaxation after shear deformation, 
and functions (6) are denoted by r/-(% t) and N~-(7, t). 

We first consider the following stationary quantities: 

r/(3,) = tlim r/+ (-),, t), Nl(3~)--tli_.mNl+(%t). (7) 

At low shear velocities, the second difference of normal stresses N2 is given by the formula 

( 1 5  1 ) 
N 2 = -  2 - ~ X + ~ / 3  N1, (8) 

obtained by Pokrovskii and eyshnograi [3]. The calculations in [3] show that,  for ~b << 1, formula (8) remains 
valid for 7By* < 10. From analysis of various experimental data, Ramachandran [4] concluded that the ratio 
N2/N1 is negative and depends neither on the concentration c nor on the molecular weight M of the polymer 
(N2/N1 < 0.3). Since X is known [1-3] to depend on M, it follows from the aforesaid that the anisotropy 
parameter/3 must depend neither on c nor on M and the estimate X <</3 < 1 must hold. 

To compare RES (2), (4), and (5) with experiments, we use the data of Menezes and Graessley [5], 
who studied shear flows of solutions of polybutadiene with various molecular weights. It is convenient to use 
their results, because their data on linear viscoelastictity have already been compared with (2), (4), and (5) 
in [1]. From this comparison, the following estimates of the parameters of the rheological model (2), (4), and 
(5) were obtained: X = 0.077, 0.025, 0.011, and 0.005, By* = 0.21, 2.35, 16.27, and 147 sec, and nT = 840.4, 
480.2, 321.5, 206.7 Pa for molecular weights M = 2 �9 10 s, 3.4 �9 10 S, 5.17.105, and 8.13 �9 10 S, respectively; in 
all cases, ~b = 0.025. 

The results of the calculation of the experimental functions (7) and the corresponding experimental 
values are given in Fig. 1. In the calculations, we used the following induced anisotropy parameters: ze = 0.1, 
/3 = 0.25, e = 0, and v = 0.1. They were chosen from the condition of the best agreement between the 
theoretical curves and the experimental data. The value of N2 was not measured in [5]. 
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Let us consider nonlinear unsteady effects. The results of the calculation of the establishment of stresses 
for a specimen with M = 3.5 �9 10 5 are given in Fig. 2, which shows that Eqs. (2), (4), and (5) describes the 
nonmonotonic attainment of r/+(7, t) and N+(% t) at high shear velocities. It is also found that 77+(7, t) ,,~ t 
(Fig. 2a) and N+(j, t) ,~ t 2 (Fig. 2b) at small ~. 

The data for r/-(3', t) and N1-(7, t) are given in Fig. 3a and b, which show that (2), (4), and (5) confirm 
the presence of two characteristic times for stress relaxation after intense shear deformation. The anisotropy 
parameter values are the same as in Fig. 1. 

Thus, for the first time, we obtained a RES that is applicable for the description of steady and unsteady 
effects in the linear and nonlinear regions of strain rates and more complex flow regimes of linear polymer 
solutions and melts. 
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